A .... CORNY world....no laughing matter #1


We  shall  see  here  what  man  has  devised  to  make  the  Western  world  at  least,  into  being  very  corny,  and  it's  really  no  laughing  matter.  As  it  is  written  in  the  book  of  Proverbs,  "There  is  a  way  that  seems  right  unto  man,  but  the  ways  thereof  are  the  ways  of  death."  On  the  physical  side,  it  means  "un-healthy"  and  indeed  can  mean  slow  death  -  

Keith  Hunt


Making Complex Foods (18,000 KERNELS)

by  Michael  Pollan


One of the truly odd things about the 10 billion bushels of corn harvested each year is how little of it we eat. Sure, we grind some of it to make cornmeal, but most of the corn we eat as corn—whether on the cob, flaked, or baked into muffins or tortillas or chips—comes from varieties other than number 2: usually sweet corn or white corn. These uses represent a tiny fraction of the harvest—less than a bushel per person per year—which is probably why we don't think of ourselves as big corn eaters. And yet each of us is personally responsible for consuming a ton of the stuff every year.

Much of the rest of that per capita ton does enter our bodies, but not before it has been heavily processed, broken down into simple compounds either by animals like steer 534 or a processing plant, and then reassembled either as beef, chicken, or pork, or as soft drinks, breakfast cereals, or snacks. What doesn't pass through the gut of a food animal to become meat will pass through one of America's twenty-five "wet mills" on its way to becoming one of the innumerable products food science has figured out how to tease from a kernel of corn. (These mills are called wet to distinguish them from the traditional mills where corn is simply ground into dry meal for things like tortillas.)

About a fifth of the corn river flowing out from the elevators at the Iowa Farmers Cooperative travels to a wet milling plant, usually by train. There it diverges into a great many slender branching tributaries, only to converge much later on a plate or in a cup. For what the wet mill does to a bushel of corn is to turn it into the building blocks from which companies like General Mills, McDonald's, and Coca-Cola assemble our processed foods.

The first rough breakdown of all that corn begins with the subdivision of the kernel itself: Its yellow skin will be processed into various vitamins and nutritional supplements; the tiny germ (the dark part nearest the cob, which holds the embryo of the potential future corn plant) will be crushed for its oil; and the biggest part, the endosperm, will be plundered for its rich cache of complex carbohydrates.

This oversized packet of starch is corn's most important contribution to the industrial food chain: an abundance of carbohydrate molecules in long chains that chemists have learned to break down and then rearrange into hundreds of different organic compounds—acids, sugars, starches, and alcohols. The names of many of these compounds will be familiar to anyone who's studied the ingredient label on a package of processed food: citric and lactic acid; glucose, fructose, and mal-todextrin; ethanol (for alcoholic beverages as well as cars), sorbitol, mannitol, and xanthan gum; modified and unmodified starches; as well as dextrins and cyclodextrins and MSG, to name only a few.

To watch the stream of corn coming off of George Naylor's farm proceed to divide, subdivide, and ultimately branch off into a molecule of fructose destined to sweeten a soda is not as easy as following it to a feedlot into a cut of meat. For one thing, the two companies who wet mill most of America's corn (Cargill and ADM) declined to let me watch them do it. For another, the process is largely invisible, since it takes place inside a series of sealed vats, pipes, fermentation tanks, and filters. Even so, I would have liked to follow my bushel of corn through ADM's plant in Decatur, Illinois (the unofficial capital of corn processing in America), or to Cargill's mill in Iowa City (the likely destination of the train I saw being loaded at the elevator in Farnhamville), but the industrial food chain goes underground, in effect, as it passes through these factories on its path to our plates.

The closest I got to following corn through a mill was at the Center for Crops Utilization Research at Iowa State University, in Ames, forty-five miles from the farmers cooperative elevator in Farnhamville. After my visit to George Naylor's farm, I spent a couple of days on the Ames campus, which really should be called the University of Corn. Corn is the hero of the most prominent sculptures and murals on campus, and the work of the institution is dedicated in large part to the genetics, culture, history, and uses of this plant, though the soybean, Iowa's second crop, gets its share of attention too. The Center for Crops Utilization Research is charged with developing new uses for America's corn and soybean surplus, and to this end operates a scaled-down wet milling operation, a Rube Goldberg contraption of stainless steel tubes, pipes, valves, vents, drying tables, centrifuges, filters, and tanks that Larry Johnson, the center's director, was more than happy to show me.

To hear Johnson describe it, the wet milling process is essentially an industrial version of digestion: A food is broken down through a series of steps that includes the application of physical pressure, acids, and enzymes. The order of the steps is different in industrial digestion—the acids come before the mechanical chewing, for instance—but the results are much the same: A complex food is reduced to simple molecules, mostly sugars.

"First we separate the corn into its botanical parts—embryo, endosperm, fiber—and then into its chemical parts," Johnson explained as we began our tour of the plant. When a shipment of corn arrives at the mill, it is steeped for thirty-six hours in a bath of water containing a small amount of sulphur dioxide. The acid bath swells the kernels and frees the starch from the proteins that surround it.

After the soak, the swollen kernels are ground in a mill. "By now the germ is rubbery and it pops right off," Johnson explained. "We take the slurry to a hydroclone"—basically a centrifuge for liquids—"where the germ floats off. After it's dried, we squeeze it for corn oil." Corn oil can be used as a cooking or salad oil, or hydrogenated for use in margarine and other processed foods: Atoms of hydrogen are forced into the fat molecules to make them solid at room temperature. (Though originally designed as a healthy substitute for animal fats, medical researchers now think these trans fats are actually worse for our arteries than butter.)

Once the germ has been removed and the kernels crushed, what's left is a white mush of protein and starch called "mill starch." To draw off as much of the protein as possible, the mill starch undergoes a progressively finer series of grindings and filterings and centrifuges. The extracted protein, called gluten, is used in animal feed. At each step more fresh water is added—it takes about five gallons to process a bushel of corn, and prodigious amounts of energy. Wet milling is an energy-intensive way to make food; for every calorie of processed food it produces, another ten calories of fossil fuel energy are burned.

At this point the process has yielded a white slurry that's poured out onto a stainless steel table and dried to a fine, superwhite powder— cornstarch. Cornstarch comprised wet milling's sole product when the industry got its start in the 1840s. At first the laundry business was its biggest customer, but cooks and early food processors soon began adding cornstarch to as many recipes as they could: It offered the glamour of modernity, purity, and absolute whiteness. By 1866, corn refiners had learned how to use acids to break down cornstarch into glucose, and sweeteners quickly became—as they remain today—the industry's most important product. Corn syrup (which is mostly glucose or dextrose—the terms are interchangeable) became the first cheap domestic substitute for cane sugar.

I remember an elementary school science experiment in which we were instructed to chew—and chew and chew—a cracker until the slurry of starch turned suddenly sweet on our tongues. The teacher explained that the enzymes in our saliva had broken the long starch molecules into shorter molecules of glucose. Much the same process—it's called "enzyme hydrolysis"—revolutionized corn refining in the 1940s. As enzymes replaced acids, refiners were able to produce progressively sweeter sweeteners from corn. Yet none were quite as sweet as sugar (or, to be more precise, sucrose). That threshold wasn't crossed until the late 1960s, when Japanese chemists "broke the sweetness barrier," in the words of the Corn Refiners Association's official history of high-fructose corn sweetener. They discovered that an enzyme called glucose isomerase could transform glucose into the much sweeter sugar molecule called fructose. By the 1970s the process of refining corn into fructose had been perfected, and high-fructose corn syrup—which is a blend of 55 percent fructose and 45 percent glucose that tastes exacdy as sweet as sucrose—came onto the market. Today it is the most valuable food product refined from corn, accounting for 530 million bushels every year. (A bushel of corn yields thirty-three pounds of fructose.)

But if the pipe marked "HFCS" leads to the fattest spigot at the far end of a corn refinery's bewildering tangle of pipes and valves, it is by no means the only spigot you'll find back there. There are dozens of other "output streams." At various points along its way through the mill some portion of the thick white slurry of starch is diverted to another purpose or, in the refiner's jargon, another "fraction." The starch itself is capable of being modified into spherical, crystalline, or highly branched molecules, each suitable for a different use: adhesives, coatings, sizings, and plastics for industry; stabilizers, thickeners, gels, and "viscosity-control agents" for food.

What remains in the slurry is "saccharified"—treated with enzymes that turn it into dextrose syrup. A portion of this dextrose is siphoned off for use as corn syrup; other fractions are recruited to become sugars like maltodextrin and maltose. The largest portion of the corn syrup stream is piped into a tank where it is exposed to glucose isomerase enzymes and then passed through ion exchange filters, emerging eventually as fructose. Now what's left of the dextrose stream is piped into a fermentation tank, where yeasts or amino acids go to work eating the sugars, in several hours yielding an alcoholic brew. This itself is frac-donated into various alcohols, ethanol chief among them, our gas tanks being the ultimate destination of a tenth of the corn crop. The fermented brew can also be refined into a dozen different organic and amino acids for use in food processing or the manufacture of plastic.

And then that's about it: There's no corn left, and not much of anything else either, except for some dirty water. (Though even some of this "steep water" is used to make animal feeds.) The primary difference between the industrial digestion of corn and an animal's is that in this case there is virtually no waste at the end of it.

Step back for a moment and behold this great, intricately piped stainless steel beast: This is the supremely adapted creature that has evolved to help eat the vast surplus biomass coming off America's farms, efficiently digesting the millions of bushels of corn fed to it each day by the trainload. Go around back of this beast and you'll see a hundred different spigots, large and small, filling tanker cars of other trains with HFCS, ethanol, syrups, starches, and food additives of every description. The question now is, Who or what (besides our cars) is going to consume and digest all this freshly fractionated biomass—the sugars and starches, the alcohols and acids, the emulsifiers and stabilizers and viscosity-control agents? This is where we come in. It takes a certain kind of eater—an industrial eater—to consume these fractions of corn, and we are, or have evolved into, that supremely adapted creature: the eater of processed food.


The dream of liberating food from nature is as old as eating. People began processing food to keep nature from taking it back: What is spoilage, after all, if not nature, operating through her proxy microorganisms, repossessing our hard-won lunch? So we learned to salt and dry and cure and pickle in the first age of food processing, and to can, freeze, and vacuum-pack in the second.